If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+4n-15=-10
We move all terms to the left:
n^2+4n-15-(-10)=0
We add all the numbers together, and all the variables
n^2+4n-5=0
a = 1; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·1·(-5)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6}{2*1}=\frac{-10}{2} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6}{2*1}=\frac{2}{2} =1 $
| 15x-35=100-4(3x) | | -6-4y=5/3 | | 23=5y-(4+7y)+1 | | 1=t/8 | | 2x+12=16+3x | | x^2-14x-44=7 | | 6(5x)=18(9)-12(2)36 | | n^2-16n-42=0 | | n^-16n-42=0 | | 3(x+3)-2x+1/2=2.8 | | 8h-4H=20 | | 1.3q-3.3-3.2q=-2.9q-4.6 | | 11q-q=20 | | -5x+8x+4=-10+x+4x | | 5+3x12=35 | | 3x+15x2=12 | | 6d+8=19+3d | | 11-7x=-22 | | 6(2a-8)=-96 | | 2p-85=p-21 | | p-33=2p-85 | | 1/5y+2=8 | | 12n^2+n+6=0 | | b+21=4b-12 | | -18y+9y=72 | | 6(2+6b)=192 | | 15u-80=7u | | 5y+25=6y+24 | | 10x+32=9x+33 | | 150−x−2x=120+2x | | y=(1/2)2 | | s+36=7s |